
Chapter 1

Analysis of longitudinal HrQoL using latent
regression in the context of Rasch modelling

1.1. Introduction

For the last ten years at least, both in the clinical tests and in the epidemiological
studies the Health related Quality of Life (HrQoL) is considered a very important
element to evaluate the state of health from the humane point of view and, therefore,
to define the most suitable treatment. Particularly, in the context of palliative care
for terminal cancer patients the HrQoL is not anymore a secondary end point of the
treatment (being the survival the primary end point), but it is the primary end point.
Therefore, the detection of good measurement and analysis tools is important to put
information at clinicians’ disposal to facilitate the therapy decisional process.

From a methodological point of view, decisions on two different but connected
aspects have to be taken for the study of a latent variable, such as the HrQoL. The
first one is about the definition of a suitable method of measurement to translate the
qualitative information coming from a set of observable items, partial indicators of the
latent variable, in a quantitative information. The second one is about the detection of
a suitable statistical methodology to explain the latent variable.

The analysis presented in this chapter is developed in the framework of the Rasch-
family models ([RAS 60]; [FIS 95b]) as regards the former aspect and in the frame-
work of multilevel models for repeated measures [SNI 99] as regards the latter aspect.
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In the most common approach, the latent variable is estimated by means of a mea-
surement model (for instance, a Rasch model) andthenthe estimates are used in a re-
gression model as observed values of the response variable. However, some elements
suggest caution toward a two separate steps approach: the bias and the inconstistency
of the latent variable estimates ([GOL 80]; [LOR 84]), the underestimation of the true
association between latent variable and covariates [MES 04] and, more in general, the
lack of flexibility and integration between applied psychometricians and statisticians
[WIL 04]. A possible solution is represented by a global approach that integrates the
measurement phase and the analysis phase in the same model: in this case one talks
of latent regression [AND 77]. The linear latent regression Rasch model is already
known in literature since several years [ZWI 91], but the extension to longitudinal
data has a more recent interest.

In this chapter, a longitudinal latent regression model that uses the Rasch analysis
as measurement tool is proposed for the first time: it consists in a random intercept
and slopes logistic model with covariates at the second aggregation level. The imple-
mentation of the model is performed in SAS, through the Nlmixed procedure: in such
a way, it is possible to achieve a better flexibility for the utilization by users of general
statistical softwares.

In section 1.2 a brief review about global models for longitudinal data is presented,
whereas in section 1.3 the latent regression model for repeated measures is developed:
in particular, the attention is focused on the model structure, on the correlation ma-
trix, on the estimation and on the computational implementation. In section 1.4 the
results of a case study on the HrQoL of terminal cancer patients under palliative care
are shown. The applied analysis is specially focused on the time effect and on the sig-
nificativity of baseline condition and of other variables on the HrQoL. Finally, some
concluding remarks are reported.

1.2. Global models for longitudinal data analysis

Submitting the same questionnaire to the same set of people repetitively over the
time is a rather common situation: the objective is monitoring the trend of a latent
variable to understand if significant changes occur; then, it raises the problem to de-
tect variables that explain these changes. In a context of this kind, the data structure is
formed by observations for every person on more than one item, and, for every item,
on more than one time point. In the global approach framework, methodological de-
velopments are concerned with three different types of models, though case studies
are rather infrequent and related to rather simple examples: Linear Logistic model
with Relaxed Assumptions (LLRA), Multi-dimensional Rasch model, Three-level re-
gression model.

– Linear Logistic Test Model with Relaxed Assumption(LLRA)
Fischer [FIS 95a] formalized the measurement of change by means of the concept of
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“virtual” items. Any change of the latent variable occurring between two time points
can be described for every person as a change of the item parameters. An itemIj

given to the same person at two different time points,T1 andT2, can be considered
as a pair of “virtual” items,I∗a andI∗b , with associated a pair of “virtual” difficulty
parameters,β∗

a eβ∗
b : if the amount of change betweenT1 andT2 is equal to a constant

δ (over all people), then the pair of “virtual” items generated by real itemIj with
difficulty βj is characterized by the two parameters:β∗

a = βj andβ∗
b = βj + δ.

Hence, the item parameters are a linear combination of the real item parameter and
the change effect. This kind of model belongs to Linear Logistic Test Model (LLTM)
family. Substituting (θi − βj) with only one parameterθij a generalization of LLTM
is obtained: it is named Linear Logistic model with relaxed assumptions and it is a
LLTM with two (in the case of two repeated measures) items for every person.

– Multi-dimensional Rasch model
Wang and Chyi-In [WAN 04] model the latent variable change over the time through a
multi-dimensional Rasch model. They discern an initial ability parameter and a modi-
fiability parameter for each occasion following the first one: all of these parameters are
considered as different latent dimensions which describe the change among adjacent
time points.

– Three-level regression model
Pastor and Beretvas [PAS 06] start with the Rasch model formulation as two-level
model, where the item responses are the first-level units and individuals are the
second-level units. Then, they put beside this model a longitudinal regression model:
it is also a two-level model, where measurement occasions are the first-level units
and individuals are still the second-level units. Putting together the two models, a
three-level model results with item responses aggregated in measurement occasions
and measurement occasions aggregated in individuals. The output is a model that
explains the change, where what is changing is the latent variable and, under every
second-level unit, there is a measurement model.

Among the three mentioned models, LLRA and multi-dimensional Rasch model
are not very suitable for complex data structure. Indeed, for both of them the number
of parameters increases by increasing the number of measurement occasions for every
person. In detail:

– LLRA: For each real item there are as many virtual items as measurement oc-
casions; moreover, every virtual parameter is a linear combination of the real item
parameter and of a change effect. Hence, if change effect is constant for all items, the
number of parameters is equal to the number of measurement occasions; otherwise, if
the change effect varies among items, the number of parameters is equal to the product
of the number of measurement occasions and the number of real items.

– Multi-dimensional Rasch model: The latent ability for every measurement oc-
casion is a dimension; moreover, for every pair of dimension three parameters have
to be estimated, i.e. two variances and one correlation coefficient. Therefore, every
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time point added to the model causes new parameters: a variance and a correlation
coefficient between the new dimension and each of the previous ones.

The multilevel model is, then, the most flexible, though the three-level structure
is computationally heavy for the estimation process. Moreover, though the model
does not become more complicated when the measurement occasions increase and it
allows that different people have a different number of time points, a too small number
of observations for every person (that is a too small number of second-level units) may
cause inaccurate estimates and high standard errors.

1.3. A latent regression Rasch model for longitudinal data analysis

1.3.1. Model structure

To remedy the above stated problems, an alternative model is proposed to analyze
longitudinal data in the context of Rasch measurement models. The framework of ref-
erence is the latent regression: the aim is modelling the latent variableθ as a function
of the time and of other covariates. Given the multilevel structure of longitudinal data
(measurement occasions are first-level units and individuals are second level units), a
(latent) regression model with random intercept is estimated to take into account the
variability among individuals. Moreover, it is reasonable to assume that also the time
effect - in the clinical context it is often the effect of a therapy - is variable among peo-
ple. In the end, the dependent variable, i.e. the latent ability, is assumed continuously
(in particular, normally) distributed.

Let us denote with:i = 1, 2, . . . , N the individuals;t the measurement occasion;
θit the “ability” parameter (i.e. the HrQoL level) fori-th person att time; f(t) any
function oft (e.g. a linear or a quadratic function);zi the value of covariatez assumed
by thei-th person;α the regression coefficient ofzi; δ0i andδ1i the random intercept
and random coefficient, respectively;γ00 andγ11 the fixed components ofδ0i andδ1i,
respectively;u0i andu1i the random components ofδ0i andδ1i, respectively. More in
detail, the random interceptu0i explains how the initial level (i.e. fort = 0) of θit of
each patient differs from the average population value; instead, the random coefficient
u1i means how the individual time effect differs from the average population time
effect. A linear multilevel model is described by the following equations:

 θit = δ0i + δ1i · f(t) + α · zi

δ0i = γ00 + u0i

δ1i = γ11 + u1i

m
θit = (γ00 + γ11 · f(t) + α · zi) + (u0i + u1i · f(t)) (1.1)
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With reference to the second member of equation (1.1), the terms in the first brack-
ets define the fixed part of the model, that is the meanµθ of θit, whereas the terms in
the second brackets define the random part of the model. The structure of the random
effects is:

[
u0i

u1i

]
∼ Normal

[(
0
0

)
,

(
σ2

u0 σu01

σu01 σ2
u1

)]
(1.2)

With respect to other multilevel linear models, this is different because the re-
sponse variable is not observed: hence, it has to be estimated by means of a Rasch
model. For dichotomous items, the Rasch model is given by the following equation
[FIS 95b], where the subscriptt is introduced here for coherence with eq. (1.1):

P (Xjti = 1|θit;βj) =
exp[θit − βj ]

1 + exp[θit − βj ]

m
logit[P (Xjti = 1|θit;βj)] = log

[
P (Xjti=1|θit,βj)

1−P (Xjti=1|θit,βj)

]
= θit − βj ,

(1.3)

where:i is thei-th person (i = 1, 2, . . . , N ); j is thej-th item (j = 1, 2, . . . , J); xjti

is the response category of thej-th item, i.e.0 or 1, chosen by thei-th person att-th
time;βj is the difficulty parameter ofj-th item.

If θit is substituted in the Rasch model with the structural model of eq. (1.1), the
following longitudinal latent regression model(LLRM ) is obtained:

logit[P (Xjti = 1|zi, u0i, u1i; γ11, α,Σ, βj)] =
= (γ00 + γ11 · f(t) + α · zi − βj) + (u0i + u1i · f(t)), (1.4)

whereΣ is the variance and covariances matrix of latent variable. In order that the
model is identifiable, the interceptγ00 of structural model has to be fixed at0; alter-
natively, one of the difficulty parameters may be fixed and soγ00 is free.

The proposed model is still a random intercept and slope model, but it is not lin-
ear, but logistic, and it allows a direct estimation of parameters from observed item
responses. Several generalizations are possible. First of all, more than one covariate
can be added and the computational heaviness does not increase substantially. Simi-
larly, for polytomous items, the Partial Credit Model1 [MAS 82] is simple to use by
means of substituting eq. (1.1) in eq. (1.5), that is substitutingβj with βjk parame-
ters. Moreover, the model can be used to estimate Differential Item Functioning (DIF)

1. Here is reminded the formula of Partial Credit Model:



6 Titre de l’ouvrage, à définir par\title[titre abrégé]{titre}

effect on one or more items, that describes a different functioning of items among
different groups of individuals. It is sufficient adding an interaction effect to item sus-
pected of DIF: i.e.βj has to be substituted byβj · z0i, wherez0i is a dummy variable
that indicates the belonging ofi-th person to a group of people (e.g. males vs females).
Moreover, by substitutingβj with a random coefficientβji, one can test the hypothe-
sis that a 2-parameter logistic model [BAK 04] describes better the data:βji has got
a fixed component, that means the average difficulty of item for the population, and
a random component, that means how different the difficulty of item is for thei-th
person. Still, if an interaction effect between a difficulty parameterβj and the time
variable is added, the time stability of questionnaire can be evaluated: it is important
to remind that, in order that a questionnaire is valid, it must be stable, that is each item
must give a contribution to measure the same latent variable in every time point.

Output from LLRM model is similar of output from “classical” longitudinal mod-
els. If the main purpose of analysis is an evaluation of the time effect on the latent
variable, the attention is on second level residuals estimates (theu1is). Theu1is show
how time effect on latent variable for a specific person diverges from the average effect
for all population. For example, in a clinical study, monitoring the impact of a therapy
on patients could be interesting: so, the time effect describes the effect of the therapy
(if the questionnaire is filled in repetitively during the therapy) and anu1is residuals
analysis allows to detect individual characteristics of patients with specially positive
or negative reaction. This kind of information can be useful to produce a classifica-
tion of patients based on individual characteristics to anticipate (before the therapy
beginning) the impact that the therapy will have on the HrQoL of every patient.

1.3.2. Correlation structure

To facilitate the analysis and the understanding of the longitudinal latent regres-
sion model, it is useful to know the correlation structure of the latent variableθit.
By recalling eq. (1.1), the variances and covariances matrix elements are promptly
defined:

P (Xitj = xij |θit, βjx) =
exp[

∑xij

k=0(θit − βjk)]∑Hj

h=0 exp
∑h

k=0(θit − βjk)
(1.5)

wherexij = 0, 1, . . . , h, . . . , Hj andβjk means the difficulty level of thek-th threshold of the
j-th item.
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V ar(θit|zi) =
= V ar[γ00 + γ11 · f(t) + α · zi) + (u0i + u1i · f(t)] =
= V ar[u0i + u1i · f(t)] =
= σ2

u0 + f2(t) · σ2
u1 + 2 · f(t) · σu01;

Cov(θit, θi′t′ |zi) =
= Cov[(u0i + u1i · f(t); (u0i′ + u1i′ · f(t′)] =
= {σ2

u0 + f(t)f(t′)σ2
u1 + σu01[f(t) + f(t′)]} · I(i=i′).

These formulas show that the variance and covariances (and, therefore, the corre-
lations) of the latent variable depend only on the measurement occasion: this means
that the correlation between the measurements of thei-th person’s latent variable in
two different time points changes with the change of the time lag and, in particular,
it decreases when the time lag increases (as it is shown in the applied analysis, Table
1.2). Naturally, coherently with the assumptions of the model, the correlation between
the measurements of the latent variable for two different individuals is equal to0.

1.3.3. Estimation

There are three main approaches to estimate a Rasch model [BAK 04]: joint max-
imum likelihood (JML), conditional maximum likelihood (CML) and marginal max-
imum likelihood (MML). In JML and CML person parameters are considered fixed
effects, whereas in MML they are assumed random and independent drawings from a
density distribution that describes the population. The latent regression point of view
considers the latent ability as a random variable: so, the most suitable approach is
the MML. The log-likelihood function is obtained integrating out the conditional log-
likelihood on the random variable; then, the log-likelihood for the longitudinal latent
regression model is the following one:

log L(β, γ11, α,Σ) =
N∑

i=1

log
∫

Θ

P (xit|θit;β) · φ(θit|γ11, α,Σ)dθit, (1.6)

wherexit is the response pattern for thei-th person att time, β is the difficulty
parameters vector andP (xi|θit;β) is the probability ofxit:

P (xit|θit;β) =
J∏

j=1

exp[xjti(θit − βj)]
1 + exp(θit − βj)

.
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Because the integral in the marginal log-likelihood does not have a closed solution,
a numerical integration method has to be used: in this chapter the adaptive Gaussian
quadrature was adopted. Finally, the estimation of random effects is usually based on
the posterior distribution of the latent variable: the mean or the mode of this distribu-
tion is used as point estimates ofu0i andu1i (so-called empirical Bayes estimates).

1.3.4. Implementation with SAS

One of the main problems about the utilization of measurement models by common-
users is that, on one side traditional computational tools do not have specialized rou-
tines to estimate this kind of models, and on the other side devoted softwares are hardly
configurable. To remedy these problems, the most recent literature is addressed to
study the potentialities of generical statistical softwares,in primis SAS (for instance,
[DOR 03]; [WIL 04]; [HAR 07]) and Stata [RAB 04]. So, it is possible the estimation
of Rasch models without using compulsorily devoted softwares, and the estimation
of generalized Rasch models, such as latent regression models, that otherwise are not
applicable. This chapter gets into this current of study, intending to implement in SAS
the longitudinal latent regression model proposed in the previous section.

The multilevel structure of Rasch model - item responses are the first-level units
and persons are the second-level units - allows to use the Nlmixed procedure of SAS
[WIL 04]. In comparison with a simple Rasch model, the longitudinal latent regres-
sion model is still a multilevel logistic model with two aggregation levels and with a
random intercept, but also with a random coefficient to explain the time effect. The
random component of the model is not any moreθ, but it is formed by the two random
effectsu0 andu1, that appear in the regression model forθ.

For a dichotomous Rasch model, lettime be the linear time effect (more in gen-
eral, any kind of time effect can be introduced), letz be a covariate with fixed effect,
let beta1, . . . , betaJ be the difficulty item parameters, letalpha be the regression
fixed coefficient ofz, let Response be the response vector, lettheta be the latent
variable, letIndividual be the second level unit, letI1, . . . , IJ be the indicators of
items, lets2u0, cu01, s2u1 be the first-level variance, the covariance, the second-
level variance, respectively, and letu0 andu1 be the random effects, then the SAS
code to estimate the LLRM is the following one:
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proc nlmixed data =filenameqpoints =number;
parmsbeta1 = num1beta2 = num2... betaJ = numJalpha=numAlphas2u0 =
numS2u0s2u1 = numS2u1cu01 = numCu01;
meantheta = gamma11· time + alpha · z;
theta = meantheta +u0 + u1 · time;
eta =theta - (beta1 · I1 + beta2 · I2 + ... +betaJ · IJ);
expeta =exp(eta);
p = expeta / (1 + expeta);
modelResponse ∼ binomial (1, p);
randomu0 u1 ∼ normal ([0, 0], [s2u0, cu01, s2u1]) subject =Individual out =
residual;
run;

Data have to be organized in a matrix so that there is not one line for each person,
but rather one line for each person-item-measurement occasion combination. Note
that the number of measurement occasions can change for different people.

The model developed in this section can also be implemented in Stata by means of
Gllamm routine [RAB 04]. The analysis in the next paragraph has been implemented
with both SAS and Stata: outcomes are the same, but Stata’s computational times are
longer (about 45 minutes in SAS and 4 hours and 30 minutes in Stata).

1.4. Case study: longitudinal HrQoL of terminal cancer patients

In this section is presented an application of the longitudinal latent regression
model. The analyzed data are supplied by an Italian multicentric study, called “Stag-
ing”, and they concern 485 terminal cancer patients under domiciliary palliative care.
A questionnaire for measuring HrQoL has been submitted to every patient both before
the beginning of the treatment (at baseline) and, afterwards once a week until death or,
in most fortunate cases, until the end of study period2. At baseline also several (about
40) individual characteristics have been surveyed about the patient, his/her family,
his/her house, his/her disease, his/her clinical situation at the moment of the first visit,
in the previous week, in the previous month and in the previous year. The question-
naire is called TIQ (Therapy Impact Questionnaire [TAM 92]): it was implemented
in 1987 at Pain Therapy and Palliative Care division of National Cancer Institute in
Milano (Italy), to measure the HrQoL in cancer patients. The questionnaire is com-
posed by 36 items with four ordinal response categories (“not at all” = high HrQoL,
“some”, “a lot”, “very much” = very low HrQoL). The following analysis is concerned
with only a subset of 8 items describing the psychological component of HrQoL:

2. The number of compiled questionnaires is very variable for different people: minimum is 1
(only survey at baseline) and maximum is 32 (survey at baseline and 31 weeks under palliative
care).
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difficulty in performing usual free time activities (diffree), fatigue (fatigue), illness
feeling (illness), sad or depressed feeling (sad), difficulty in concentrating or paying
attention (difconce), nervousness feeling (nervousness), insecurity (insecurity) and
confusion feeling (confusion).

As already mentioned in the introduction, when the disease is at a terminal phase,
the most important end point of the pain therapy is not any more the survival, but the
quality of life of the patient. The aim of the survey carried out by the “Staging” study
is twofold:

– evaluating the time effect on HrQoL trend during the palliative care;

– understanding if the measurement of HrQoL at baseline gives a sufficient infor-
mation to predict the HrQoL during the therapy or, on the contrary, the estimation at
baseline has to be completed with other information on individual characteristics.

The latent regression model was estimated on 285 patients with at least 3 mea-
surements on quality of life (plus the measurement at baseline). The selection model
occurred in subsequent steps, taking into account a different number of random ef-
fects and performing several explorative analysis to select the significant covariates.
Finally, the following model has been selected:

logit[P (Xjti = 1|u0i, u1i;µθ,Σ,β)] =
= (0.271 ·

√
t + 0.825 ·HrQoLbasei + 0.546 · difconce − 0.308 · confusion+

+1.997 · diffree + 1.077 · illness + 0.302 · insecurity + 2.487 · fatigue+
+1.275 · sad + 0.632 · nervousness) + (u0i + u1i ·

√
t)

To rightly understand the estimated regression coefficients, the dichotomization
applied for the item response categories has to be taken into account:0 for the category
“not at all”, that is absence of symptom or disorder,1 for the categories “some”, “a
lot” or “very much”, that is presence of symptom or disorder. Hence, the probability
of category1 rather than0 is as higher as lower is the level of HrQoL;vice versa,
patients with a good HrQoL are inclined to choose category0. Therefore, an high
numerical value (both at baseline and after) is related with a low level of HrQoL.

For further details, Table 1.1 shows the estimated values of parameters with stan-
dard errors, p-values and95% confidence intervals; Table 1.2 shows the correlation
matrix (for the first 8 measurement occasions). The correlation between the HrQoL
of the same patient in two different time points is always highly positive, though it
decreases when the time lag increases.

The outcomes from the estimated model lead into several considerations. As re-
gards the main objective of analysis (detecting determinants of HrQoL during pallia-
tive care) only quality of life at baseline is significant with a positive effect (low values
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Estimate Stand.Error p-value Lower limit Upper limit
difconce -0.546 0.088< .0001 -0.719 -0.373
confusion 0.308 0.873 0.0005 0.137 0.480
diffree -1.997 0.096< .0001 -2.187 -1.808
insecurity -0.302 0.088< .0001 -0.474 -0.129
illness -1.077 0.090 0.0007 -1.253 -0.901
nervousness -0.632 0.088< .0001 -0.805 -0.458
fatigue -2.487 0.102< .0001 -2.687 -2.287
sad -1.275 0.091< .0001 -1.454 -1.097√

t 0.271 0.044< .0001 0.186 0.357
HrQoLbase 0.825 0.062< .0001 0.703 0.947
σ2

u0 0.971 0.138< .0001 0.699 1.242
σ2

u1 0.272 0.041< .0001 0.190 0.351
σu01 -0.139 0.060 0.0222 -0.257 -0.020

Table 1.1.Longitudinal latent regression model: estimates, standard errors,
p-values, confidence intervals (α = 0.05).

0 1 2 3 4 5 6 7 8
0 1.000 0.860 0.743 0.650 0.575 0.514 0.463 0.420 0.383
1 1.000 0.978 0.945 0.910 0.878 0.849 0.823 0.800
2 1.000 0.992 0.975 0.956 0.937 0.919 0.903
3 1.000 0.996 0.986 0.975 0.963 0.951
4 1.000 0.997 0.991 0.984 0.976
5 1.000 0.998 0.994 0.989
6 1.000 0.999 0.996
7 1.000 0.999
8 1.000

Table 1.2.Longitudinal latent regression model: correlation matrix (first 8
measurement occasions).

of HrQoL at baseline are related with low values of HrQoL during the treatment and
vice versa). None of the 40 individual characteristics observed at baseline gives sig-
nificant information on the future trend of HrQoL. Then, about the initial question on
what variables have to be gathered at baseline to predict the HrQoL trend, the model
shows that the questionnaire filled at the beginning by patient can explain some vari-
ability of future HrQoL; whereas the knowledge of further characteristics does not add
any relevant information.
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The other significant variable is time effect: time affects numerical value of HrQoL
with a quadratic positive effect. In particular, the value of0.271 for the regression
coefficient means that when the time lag increases the numerical value of HrQoL in-
creases (i.e. its level gets worse), with a marginally decreasing rate. The deterioration
of HrQoL is explainable with the approach to the death. The time effect can be con-
sidered as the result of two different, but hardly separable effects: approach to death
and palliative care. Understanding if palliative care has a positive effect on the HrQoL
should be an interesting question. Unfortunately, the data set does not give any aid to
answer to this question: the study should be repeated with a control group, so that to
compare patients under palliative care and patients under a different kind of therapy.

The fixed time coefficient equal to0.271 defines theaveragetime effect on the
population. Second-level residuals (u1i), on the other hand, show how much time
effect for thei-th person goes away from the average value of population. Positive
values mean an individual time effect greater than average, that is an impact on qual-
ity of life more negative; negative values mean an individual effect less negative and,
particularly, values smaller than−0.271 cause an improvement of HrQoL over the
time. Figure 1.1 shows a classification of patients based onu1i residuals. For ev-
ery patient the residual value and the corresponding confidence interval (based on
suggestions of Goldstein and Healy [GOL 95]) are shown: two patients can be con-
sidered significantly different when the respective intervals are not overlapped. How
the graphic shows, only individuals with extreme residuals are significantly different
from the remaining population. In particular, only15 patients (called Group 1) show
a confidence interval with values smaller than−0.271: in other words, at a confidence
level of 95%, the HrQoL of these people has an improvement over the time. On the
opposite side, the confidence interval of77 patients (called Group 2) contains only
values greater than−0.271, so the individual time impact on HrQoL is negative at
95% level. Table 1.3 shows the individual characteristics that have a different distri-
bution between the two groups of patients. From a descriptive point of view, patients
from Group 1 are distinguished by a lower percentage of people that live alone and,
consequentially, by an higher percentage of people that have a partner; more than1/3
of them has not any metastasis versus the11% of patients from Group 2; moreover,
some physical symptoms, such as break through pain, endocranial hypertension and
decubitus lesions, are more rare. Finally, only36% (versus59%) are confined to bed
and60% (versus74%) depend on someone else for the activity daily living. Really,
the differences between the two groups of patients are statistically significant only in
relation with the absence of metastasis (1% significativity level) and the compulsion
to stay in bed (5% significativity level).

The other second-level residual component,u0i, explains the alteration of intercept
for average patient int = 0, that is after the first week of therapy. The interpretation is
similar tou1is: positive values mean an initial HrQoL level worse than average pop-
ulation and negative values mean a level better than average. The covariance between
second level residuals is negative; the correlation coefficient betweenu0i andu1i is
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Group 1 Group 2
% Total % Total

lives alone 0.07 1 0.16 12
has a partner 0.80 3 0.58 32
no metastasis** 0.36 5 0.11 8
break through pain 0.07 1 0.19 13
endocranial hypertension 0.00 0 0.08 6
decubitus lesion 0.00 0 0.10 8
confined to bed* 0.36 5 0.59 44
dependent for adl 0.60 9 0.74 57
Total 15 77

Table 1.3.Comparison between patients with a positive individual time effect
on HrQoL (Group 1) and patients with a negative individual time effect on

HrQoL (Group 2). (** = significativity at1% level; * = significativity at5%
level.)

equal to−0.270. This means that patients with a HrQoL level better than average
after the first visit (t = 0) have a worse reaction during the continuation of therapy;
vice versa, the therapy should be more effective for people with a more crucial situa-
tion at beginning. A possible interpretation of negative correlation can be ascribed to
the characteristics of palliative care, whose effectiveness level appears better in more
crucial situations.

Figure 1.1. Second-level residualsu1i: estimates and confidence intervals.
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In the end, the estimation of the LLRM gives information about the difficulty of
items:diffree andfatigue items are the “easiest”, that is they are attended in the many
of patients, also patients with a good HrQoL level; instead,confusion andinsecurity
items are the most “difficult”, that is only people with a low HrQoL level show them.

To conclude the analysis, a two steps approach was applied, separating the mea-
surement model from the structural model. First of all, the HrQoL of every person in
different time points has been estimated;then, these values were used as dependent
variable in a multilevel linear model (see eq. (1.1)), with the same covariates of LLRM
(without items, obviously):

Yi = (γ00 + γ11 ·
√

t + α ·HrQoLbasei
) + (u0i + u1i ·

√
t + εji).

Outputs from the two steps approach are similar with outputs coming from other
analysis ([ZWI 91] and [ADA 97]): as Table 1.4 shows, both time effect and HrQoL
at baseline coefficient estimated by the two steps approach are smaller than the corre-
sponding values estimated by the latent regression model.

LLRRM Long.Linear model√
t 0.271 0.035

HrQoLbase 0.825 0.542
σ2

u0 0.971 0.026
σ2

u1 0.271 0.006
σu01 -0.139 -0.005

Table 1.4.Global approach and two steps approach: comparison.

1.5. Concluding remarks

This chapter is concerned with the relationship between measurement models and
structural models when the interest of analysis is focused on a latent variable. A
global approach that integrates measurement and explanation of a latent variable is
more suitable than an approach that separates the two aspects. Following this idea, a
latent regression model for longitudinal data is developed by using a Rasch model as
measurement tool: it consists of a logistic model (or ordinal logistic in case of poly-
tomous responses) with a random intercept and a random coefficient, which relates
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explanatory covariates of latent variabledirectly with item responses. The model was
implemented by means of the Nlmixed procedure of SAS.

The longitudinal latent regression model has got several advantages. First of all,
it gets over the drawbacks of the two steps approach. Secondly, it is developed in a
framework (multilevel modelling) well-known in the literature: this allows to estimate
the model by means of generical statistical tools, supporting the utilization of latent
regression by common-users. Moreover, it can be easily interpreted on the basis of
random and fixed coefficients: in particular, the estimation of random components
gives information on how each individual differs from the average population. In
comparison with other global models for longitudinal data, its complexity does not
increase with the number of measurement occasions; moreover, the treatment of a
different number of observations for every individual does not represent any particular
problem. Finally, as outlined in section 1.3.1, it can be extended to take into account
more general data structures.

A priority question to study in deep in a following analysis is concerned with the
belongings of the proposed model to the Rasch family. In other words, it is interesting
to understand if the LLRM verifies the main properties of Rasch models, i.e. the
sufficiency of the raw scores and the specific objectivity.

Moreover, the complexity of the analyzed data set illustrates some other problems
that will be dealt in a future development of the work. First of all, the logistic latent
regression model should be extended to consider also one or more latent covariates,
so as to take into account their random nature, and to consider the multi-dimensional
nature of the questionnaire. Secondly, another problem is the presence of informative
drop out, due to the death of patients during the therapy.
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